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Simulation of electrophoretic separations by the flux-corrected
transport method
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Abstract

Electrophoretic separations at typical experimental electric field strengths have been simulated by applying the flux-
corrected transport (FCT) finite difference method to the transient, one-dimensional electrophoresis model. The performance
of FCT on simulations of zone electrophoresis (ZE), isotachophoresis (ITP), and isoelectric focusing (IEF) has been
evaluated. An FCT algorithm, with a three-point, central spatial discretization, yields numerical solutions without numerical
oscillations or spurious peaks, which have plagued previously-published second-order solutions to benchmark ZE and ITP
problems. Moreover, the FCT technique captures sharp zone boundaries and IEF peaks more accurately than previously-
published, first-order upwind schemes.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction operating parameters. Simulations also afford the
opportunity to examine processes, such as the evolu-

Electrophoretic separations encompass a variety of tion of the concentration, fluid velocity, electric, and
well-established techniques for fractionating mix- conductivity fields, which are not amenable to ex-
tures of ionic solutes for analytical and preparative perimental investigation in microscale systems.
applications. The desire to enhance separation ef- However, the potential utility of numerical simula-
ficiencies, resolution, and sensitivity continues to tions has not been completely realized inasmuch as
spur the development of new and improved methods. many problems of interest are not yet tractable.
For example, lab-on-a-chip technology has intro- A general set of balance laws for electrophoretic
duced a new approach to electrophoretic separations, separations was first introduced by Bier and co-
and underscored the need for a more refined under- workers [2], who developed a computer simulation
standing of electromigrational transport processes of the classical modes of electrophoretic separation
[1]. Computer simulations have the potential to play [3–5]. Dose and Guiochon [6] subsequently reduced
a vital role in the development of new separations by computation times by introducing column segmenta-
providing a tool to explore the effects of various tion to eliminate repetitious calculations in regions

where the first and second spatial derivatives of all
components vanished. Schafer-Nielsen [7] recog-*Corresponding author. Tel.: 11-520-621-6043; fax: 11-520-
nized that for separations involving weak elec-621-6048.
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to solving the nonlinear set of algebraic equations decades. The flux-corrected transport (FCT) method
required to evaluate the pH and ionic speciation; originated by Boris and Book was initially developed
computation efficiency was improved by eliminating for hyperbolic conservation laws [15–21], and is an
this calculation where and when all component appealing method because it is both monotonic and
concentrations remained constant. These early and second-order accurate. FCT algorithms are multi-step
other similar schemes [8] were suited to nominal finite difference schemes in which numerical diffu-
electric field strengths approximately two orders of sion is included in a higher-order finite difference
magnitude lower than those now typically used in representation of the conservation law; this prevents
practice (50–500 V/cm). Their high-field deficien- spurious peak formation. The numerical diffusion is
cies result from the accumulation of substantial then removed in a subsequent ‘antidiffusion’ step,
discretization errors introduced in regions of sharp except from regions where it is needed to offset the
concentration gradients by higher-order (order 2 and discretization error that would otherwise lead to
above) finite difference approximations. These dis- spurious peak development. An antidiffusion-flux
cretization errors accumulate to form artifactual limiter is used to decide where and how much of the
peaks or valleys which spawn additional peaks and numerical diffusion should be removed. Successful
valleys, and perpetuate the growth of spurious oscil- implementations of FCT have been demonstrated for
lations. various higher-order schemes, numerical diffusion

Ermakov et al. [9,10] controlled the numerical and antidiffusion coefficients, antidiffusion flux limi-
oscillations by adding artificial dispersion terms to ters, etc. [16–23]. In the specific context of electro-
the discretized equations, and hence were able to phoresis, Clifton [24] and Blanco et al. [25] respec-
simulate zone electrophoresis (ZE) and isotacho- tively applied an FCT algorithm to a steady-state,
phoresis (ITP) at higher electric field strengths. This continuous-flow (CFE) model and to high-field
method, though a substantial improvement over protein ZE.
previous numerical implementations, still failed to In this paper we examine FCT as a general high-
suppress oscillations in simulations with local field field method to simulate the various modes of
strengths of O(100 V/cm). Martens et al. [11] electrophoretic separation, and compare the tech-
evaluated the application of several implicit upwind nique to more conventional approaches (i.e. no flux
numerical methods, including first and higher-order limiter). We adapt the Boris and Book approach to
schemes, to the simulation of ZE and ITP sepa- the parabolic conservation laws of the transient
rations. The higher-order schemes exhibited numeri- electrophoresis model and preserve the essential
cal oscillations and/or significant mass balance aspects of FCT, viz., spurious oscillations are sup-
errors. The first-order upwind schemes suppressed all pressed and numerical diffusion is controlled. The
oscillations without significant mass balance errors, effectiveness of any numerical approach can vary
but included numerical diffusion that resulted in dramatically with the physics of the problem, and
overprediction of zone boundary thicknesses. Ikuta ITP and IEF differ mechanistically from ZE and
and Hirokawa [12] simulated high-field ZE with an CFE. Thus, to evaluate the broad performance of the
explicit first-order upwind method that proved to be FCT algorithm, we simulate three benchmark elec-
numerically monotonic but also suffered from nu- trophoretic separations–a ZE, an ITP, and an IEF
merical diffusion. Application of these high-field separation–at realistic electric field strengths. The
methods to the simulation of isoelectric focusing ZE and ITP benchmarks have been used previously
(IEF) has not been reported. by others to evaluate various numerical schemes

Development of higher-order finite difference [10–12]. For comparison, the separations are also
methods for solving advection problems involving simulated using two other common explicit finite
sharp gradients began in the early 1970s with the use difference methods: a first-order explicit upwind
of flux limiters [13–15]. Van Leer [14] and Boris and scheme and the second-order central difference
Book [15] independently introduced the first flux scheme employed by Palusinski et al. [4]. The spatial
limiter methods, and development of these and discretization of the upwind scheme is equivalent to
related methods has continued over the last three the Diffusion Implicit Migration Explicit (DIME)
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scheme described by Martens et al. [11], except the P cationic and N anionic species, then the massk k

diffusion term is treated explicitly rather than im- action relations for ions of valence z are
plicitly. The FCT solutions converged on signifi- z 1 z21A áH 1 A ,k kcantly coarser grids than did the upwind and central

z 5 2 N 1 1, 2 N 1 2, . . . , 1 Pdifference solutions, and FCT provided substantially k k kHk 5 1, 2, . . . , M,more accurate solutions to the electrophoresis model
when compared on the same grid. For example, FCT

which are characterized by the equilibrium constants
simulations of IEF were non-oscillatory on spatial

1 z21grids where the explicit upwind scheme exhibited [H ]nkz ]]]K ; ,zksignificant mass balance errors, and where the central nk
difference scheme was either oscillatory or unstable.

z 5 2 N 1 1, 2 N 1 2, . . . , 1 Pk k kIn contrast to the numerical method described by (2)Hk 5 1, 2, . . . , M,Ermakov et al. [10], the FCT simulations showed no
z zspurious oscillations on any spatial grid, and sharp where n is the concentration of subspecies A . Itk kzone boundaries were captured more faithfully than follows from the electroneutrality approximation that

by the first-order upwind schemes described by
M KMartens et al. [11] and by Ikuta and Hirokawa [12]. w1¯ ]]0 5O z C 1 [H ] 2 , (3)1k kAs a result, FCT solutions provided information on [H ]k51

the benchmark separations that could not be obtained
¯where C is the concentration and z is the effectivek kby the previously-published simulations [10–12].

valence of the kth component, i.e.
1Pk

zC ; O n , k 5 1, 2, . . . , M, (4)k k2. Balance laws for electrophoretic separations z52Nk

andA general set of balance laws, governing the
1Pktransport of ionic and neutral compounds in iso-

zthermal electrophoretic separations, was developed O znk
z52Nkin the 1980s [2–4], and later detailed in a monograph ¯ ]]]z ; , k 5 1, 2, . . . , M. (5)k Cby Mosher et al. [5]. This coupled set of nonlinear k

partial differential and algebraic equations includes To account for local variations of the C , a massk
1an unsteady electromigration–diffusion equation for balance is written for each component, viz.

each solutal component, a charge balance, the elec-
≠Ck etroneutrality approximation, expressions for ]5 2=? [v C 2 v k T =C ],k k k B k≠tionogenic dissociation–association equilibria, and a
k 5 1, 2, . . . , M, (6)model for calculating protein mobilities as a function

of pH and ionic strength. The balance laws are
and this forms a set of non-linear electro-diffusional

summarized here in a form suited to FCT simula-
transport equations, coupled through the electric field

tions. A notation similar to that introduced by Clifton
and the component speciation. In Eqs. (6), k T is theB[25] is used.
Boltzmann temperature, and v is the hydrodynamickIon concentrations, pH, and effective valences are
mobility of the kth component (taken here to be

determined by a coupled set of mass–action rela- eindependent of component speciation); v is thektions. These include the dissociation of water, viz.
effective component electrophoretic velocity, viz.

1 2 214 2K ; [H ][OH ] 5 10 M (1)w

1The local fluid velocity is not included in this formulation, but
and the ion dissociation–association equilibria for M a uniform fluid velocity field (such as the mean electroosmotic
solutal components. If the neutral form of the kth flow [26,27]) can be accommodated by adopting a frame of

0component A is protonated or deprotonated to form reference moving with the fluid velocity.k
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e ¯v 5 ez v E, k 5 1, 2, . . . , M, (7) port equations (Eqs. 6) approach a hyperbolic form.k k k

As a result, linear finite difference schemes, with
where E is the local electric field, and e is the charge second-order and higher spatial accuracy, yield solu-219on a proton (1.6310 C). tions with numerical overshoots, undershoots, or

The governing equations are closed by combining oscillations in the vicinity of sharp concentration
Eqs. (3) and (6) to balance the charge; this yields an gradients (unless an impractically fine mesh is ap-
equation for E, i.e. plied). To guarantee numerical monotonicity, a one-

dimensional central spatial discretization of Eqs. (6),0 5
such as that employed by Palusinski et al. [4] and byM

1 Dose and Guiochon [6], requires that¯=? sE 1 ek T O v =z C 1 v =[H ] 2F SB k k k H
k51

euv uDx
]]Pe ; , 2 (11)1 21 Dx Dv K =[H ] , (8)DGOH w

for each component at all times and positions. In
where (11), Pe is the cell electric Peclet number and DxDx

e
M is the spatial grid size; D is the diffusivity and uv u is] Kw2 2 1 ]]s 5 e O z v C 1 v [H ] 1 v (9) the magnitude of the local electrophoretic velocity ofF G1k k k H OH [H ]k51 the component. To satisfy (11), the number of

segments n in a discretized domain of length L,is the local electrical conductivity. In Eqs. (8) and s

must vary as n | (Pe ) L /Dx ; Pe for a fixed(9), v and v are, respectively, the hydrodynamic s Dx max LH OH ]1 2 2 uniform grid. Potential gradients exceeding 10 V/cmmobilities of H and OH , and z is the meank 3typically correspond to Pe . O(10 ), and this dic-square valence of the kth component, viz. L
3tates an impractical n .O(10 ) to guarantee mono-s1Pk

tonic simulations. Ermakov et al. [9,10] developed a2 zO z nk numerical scheme employing artificial dispersion,] z52Nk2 ]]]z ; , k 5 1, 2, . . . , M. (10) which greatly improved the simple central differencek Ck
methods. Unfortunately, this method produced oscil-

For components that may undergo many protona- latory solutions when simulating electrophoretic
4tion or deprotonation reactions (e.g. proteins), dis- separations with Pe . O(10 ).L

sociation–association equilibrium constants are not Some first-order finite difference schemes, on the
necessarily available. In such cases, subspecies con- other hand, such as the upwind schemes described by
centrations are not calculated, and effective and Martens et al. [11] and by Ikuta and Hirokawa [12],
mean square valences are extracted from titration are monotonic at any Pe but suffer from excessiveDx
data. For details on the calculation of effective and numerical diffusion. The lower accuracy of these
mean square valences from titration data, and the schemes is generally considered more tolerable than
calculation of protein mobilities as a function of pH the spurious peaks and distorted concentration pro-
and ionic strength, see Mosher et al. [5]. files generated by the higher-order difference meth-

ods. Though the first-order upwind difference meth-
ods yield monotonic solutions for any grid spacing,

3. Numerical implementation they require an extremely fine mesh to substantially
reduce numerical diffusion, and the resultant n iss

Standard numerical techniques, when applied to comparable to that required of the central difference
Eqs. (6), and implemented for typical experimental schemes to maintain Pe , 2.Dx

conditions, evince gross instabilities or inefficiencies. Since these numerical difficulties arise when elec-
The numerical problems arise as the potential gra- tromigration dominates the electro-diffusional trans-
dients exceed 10 V/cm. Electromigrational (or elec- port of solutes, it seems reasonable to consider the
trophoretic) transport of the ionic solutes dominates use of numerical methods developed for solving
diffusion, and the unsteady electro-diffusional trans- hyperbolic partial differential equations. There is a
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class of such methods that apply flux or slope error. Eqs. (6) were solved according to the follow-
limiters [13] to higher-order difference schemes to ing algorithm.
prevent the formation of spurious overshoots or
undershoots. The limiter is basically a set of rules Step 1. For each component, calculate the con-
designed to recognize the formation of a numerical centration C at each position x 5 iDx (i 5 0, 1,i, j11 / 2 i

undershoot or overshoot, and to remove it or prevent 2, . . . , n ) at time t 5 t 1 1/2Dt ( j 5 0, 1,s j11 / 2 j
jits formation by limiting the fluxes in these regions. 2, . . . , n ), where t 5 o (Dt) ; Dx and Dt are,t j m51 m

This is done while maintaining a higher-order accur- respectively, the discretized spatial and temporal
ate finite difference approximation throughout the increments, and n is the number of temporal incre-t
remainder of the simulation domain. Distinct sets of ments. This is done by first determining the trans-

Trules, and methods of implementing them, differen- ported solution C (no numerical diffusion), viz.i, j11 / 2
tiate the various flux limiter methods.

T
1C 5The flux-limiter method of Boris and Book (FCT) ]i, j1 2

employs a multi-step process in which sufficient
Dt e e d dnumerical diffusion is added to a higher-order finite 1 1 1 1 1 1]C 2 v C 2v C 1f 2fF G] ] ] ] ] ]i, j i1 , j i1 , j i2 , j i2 , j i1 , j i2 , j2 2 2 2 2 22Dxdifference solution to ensure monotonicity [15–21].

(12)The numerical diffusion is then removed in an
antidiffusion step except where the antidiffusion where the diffusive flux is
fluxes are limited by a set of rules to prevent the

(C 2 C )i11, j i, jformation of numerical overshoots or undershoots. d
1 ]]]]f 5 2 D (13)]i1 , j2 DxBecause the FCT method was formulated to yield

emonotonic solutions to unsteady hyperbolic equa- and v and C are calculated as thei11 / 2, j i11 / 2, jtions, there is no limit on Pe when applying FCTDx arithmetic average of the values at x and x . Nexti i11to unsteady advection–diffusion (or electromigra- numerical diffusion is added to the transported
Dtion–diffusion) equations [15–21]. solution to find C , i.e.i, j11 / 2

D T nd nd3.1. PLPE FCT 1 1 1 1C 5 C 2 ( g 2 g ) (14)] ] ] ]i, j1 i, j1 i1 , j i2 , j2 2 2 2

In simple tests on unsteady convection problems, where
an FCT algorithm called Shasta Phoenical Low

nd
1 1g 5 2 n (C 2 C ) (15)] ]i1 , j i1 , j i11, j i, jPhase Error performed the best of the explicit 2 2

methods evaluated by Boris and Book [17]. They
has the form of a discretized diffusion flux multipliedand co-workers later applied the phoenical low phase
by the ratio of the current time step to the spatialerror (PLPE) approach to a second-order central
increment. n is, in effect, a dimensionlessi11 / 2, jspatial discretization and incorporated the algorithm
velocity-dependent diffusion coefficient [18]into several library subroutines [18,19,21]. Since this

1 1method employs a second-order central difference
21 1] ]n 5 1 e (16)] ]i1 , j i1 , js dspatial discretization, it is a natural choice for 2 26 3

modifying the numerical implementation of the with
electrophoresis model developed by Palusinski et al.

Dt[4]. e
1 1]e 5 v (17)] ]i1 , j i1 , j2 2DxThe PLPE FCT method was applied to Eqs. (6) in

one space dimension using a second-order Runge– Finally numerical antidiffusion is applied to find
Kutta (RK) time step and central difference spatial C , viz.i, j11 / 2
discretization, thus creating a scheme which is of

D ad adsecond order in both time and space except in the 1 1 1 1C 5 C 2 g 2 g , (18)S D] ] ] ]i, j1 i, j1 i1 , j i2 , j2 2 2 2regions where the nonlinear flux correction makes it
impossible to determine the order of the truncation where
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ad T T
1 1 1 1g 5 L m C 2 C (19) Numerical implementation of the remainder of theH S DJ] ] ] ]i1 , j i1 , j i11, j1 i, j12 2 2 2

model follows the method previously described by
1 1 Palusinski et al. [4]. The second-order RK/FCT21 1] ]m 5 2 e , (20)] ]i1 , j i1 , js d2 26 6 algorithm described above replaces the 5th-order

Runge–Kutta–Fehlberg (RKF) /2nd-order Centraland Lhgj is the nonlinear function that applies the
Spatial Difference (CSD) algorithm used to solveflux limiter to g. In the ZE and ITP simulations, the
Eqs. (6).strong flux limiter described by Boris et al. [21] was

applied, and that overall numerical scheme is iden-
tified here as PLPE1. This limiter prevents spurious 3.2. Explicit upwinding
overshoots and undershoots from forming by
prohibiting the creation of new extrema, as well as To evaluate the performance of the PLPE FCT
the accentuation of existing extrema, during the method for the transient electrophoretic separations
antidiffusion stage. In the IEF simulation, two flux model described in Section 2, three benchmark
limiters were applied–the strong flux limiter of problems were solved, and the solutions compared to
PLPE1 and a weaker limiter (cf. Eqs. (6–14), and solutions derived from two other explicit numerical
(17–18) of Ref. [20]). The weaker flux limiter techniques. One was the RKF/CSD method de-
allows the creation and accentuation of extrema, as scribed by Palusinski et al. [4]. This is a typical
long as these extrema do not exceed the values of higher-order scheme that does not guarantee mono-
neighboring nodes from the previous time step. The tonicity, and includes the same spatial discretization
scheme incorporating this flux limiter is identified as that used in the PLPE FCT algorithm to find the
here as PLPE2. transported solution. The other method was an

explicit first-order upwind scheme that guarantees
Step 2. For each component, calculate the con- monotonicity (at the expense of accuracy). These
centration C at time t 5 t 1 Dt. The step schemes were chosen for comparison to illustratei, j11 j11 j

ebegins with a prediction of. the velocity v how FCT combines the second-order accuracy of thei11 / 2, j11 / 2
dand the flux f , which are calculated using RKF/CSD method with the monotonicity of thei11 / 2, j11 / 2

the values of C from Step 1 and Eqs. (2–5), first-order upwind methods. In the upwinding algo-i, j11 / 2

(7–10), and (13). Next, as in Step 1, a transported rithm, the spatial discretization is equivalent to that
Tsolution C is determined, viz. in the first-order upwind schemes of Martens et al.i, j11

[11], but the time derivative is discretized by aTC 5i, j11 forward difference to yield a fully explicit scheme,
Dt as are the other schemes examined here. The second-e e

1 1 1 1 1 1]C 2 v C 2 v C 1F ] ] ] ] ] ]i, j i1 , j1 i1 , j i2 , j1 i2 , j2 2 2 2 2 2Dx order RK timestep used in the PLPE FCT algorithm
d d is also used in the upwind scheme. The upwinding is1 1 1 1f 2 f (21)G] ] ] ]i1 , j1 i2 , j12 2 2 2 done as follows:

eD For v , 0:Numerical diffusion is then added to find C : i, ji, j11

D D nd nd
1 1 1 1C 5 C 2 g 2 g (22)S D] ] ] ]i, j11 i, j11 i1 , j1 i2 , j1 1C 52 2 2 2 ]i, j1 2

where Dt e e d d
1 1]]C 2 v C 2v C 1f 2fF G] ]i, j i11, j i11, j i, j i, j i1 , j i2 , jnd 2 22Dx1 1 1 1g 5 n (C 2 C ). (23)] ] ] ]i1 , j1 i1 , j1 i11, j i, j2 2 2 2 (26)

Lastly, numerical antidiffusion is applied to find:

D ad ad C 5i, j111 1 1 1C 5 C 2 g 2 g (24)S D] ] ] ]i, j11 i, j11 i1 , j1 i2 , j12 2 2 2

Dt e e d d] 1 1 1 1 1 1C 2 v C 2v C 1f 2fwhere ] ] ] ] ] ]i, j f i11, j1 i11, j i, j1 i, j i1 , j1 i2 , j1 g2 2 2 2 2 2Dx
ad T T

1 1 1 1g 5 L m (C 2 C ) (25) (27)H J] ] ] ]i1 , j1 i1 , j1 i11, j11 i, j112 2 2 2
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eFor v . 0: converge in any zone boundary, and therefore eveni, j

the best of these schemes would require an impracti-
1C 5]i, j1 cal amount of simulation time to meet this conver-2

gence requirement. Therefore, a converged solutionDt e e d d
1 1]]C 2 v C 2v C 1f 2fF G] ]i, j i, j i, j i21, j i21, j i1 , j i2 , j is defined here as one which, upon doubling the2 22Dx

number of segments, changes everywhere by less(28)
than 1% of the full-scale value, except in zone
boundaries that are narrower than 0.2% of the

C 5i, j11 column length. In these regions, the zone boundary
Dt thicknesses are required only to be resolved to 0.2%e e d d] 1 1 1 1 1 1C 2 v C 2v C 1f 2f] ] ] ] ] ]i, j f i, j1 i, j i21, j1 i21, j i1 , j1 i2 , j1 g2 2 2 2 2 2Dx of the column length. The zone boundary thickness

is defined here as the length over which a dependent(29)
variable’s value changes from 1% to 99% of the

This scheme is identified here as UPWIND, and the value difference between one plateau value and
RKF/CSD method will henceforth be identified another. These convergence criteria provide a
simply as CSD. reasonable basis for comparison of the numerical

schemes delineated in this paper. Meeting more
3.3. Discretization stringent convergence criteria efficiently would re-

quire the use of adaptive grids, which is beyond the
In all simulations, the spatial discretization step scope of this paper.

was prescribed and the time step calculated to meet
certain criteria specific to each numerical method. In 3.4. Equipment
the PLPE1 and PLPE2 simulations, the time step was
calculated to maintain the maximum Courant num- All simulations were performed on an IBM RISC
ber, Co ; ue u , at 0.45, since numerical mono- System/6000 workstation, running the AIX Versionmax i, j max

tonicity is only ensured using the PLPE method for 3.2 UNIX operating system and AIXwindows
Co,0.50 [21]. Monotonicity for the UPWIND graphical user interface. All computations were
scheme however is guaranteed for Co,1.0 [16], and coded in FORTRAN 77 and compiled using an AIX
thus Co was maintained at 0.90 for the upwind XL FORTRAN Compiler /6000 Version 2.3.
simulations. In the CSD simulations, the time step
was controlled by the RKF algorithm, which adjusts
the time step to maintain an estimate of the trunca- 4. Results and discussion
tion error within prescribed bounds [28].

The spatial grid was prescribed to permit com- 4.1. ZE benchmark
parison to previously-published simulation results,
and to establish the convergence requirements of A ZE separation of two weak bases, aniline and
each scheme. A reasonable definition of a converged pyridine in a uniform buffer, was simulated using
solution might be a solution that changes everywhere each of the numerical techniques described in Sec-
by less than 1% of the full-scale value upon doubling tion 3. The buffer was composed of 12 mM Tris base
the number of segments. However, at typical electric and 20 mM acetic acid, and the analytes were
field strengths, component zone boundaries are often introduced as a 5 mm sample plug, 5 mm from the
reduced to 0.01% of the column length or less. On a anodic end of a 20 cm long capillary. Initial sample
fixed uniform grid, a perfect numerical scheme, i.e. zone boundary thicknesses were approximately 4%
one that captures the entire zone boundary in one of the zone width (|2 segments of fine mesh). The
segment, would require at least 10 000 segments to initial analyte concentrations in the sample plug were
correctly resolve such transitions, and hence meet the 1 mM each, and the detector was positioned 10 cm
above defined convergence criterion. The numerical from the anode. The simulation was performed at a

2schemes studied here require at least 3 segments to constant current density of 2547 A/m , which
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corresponded to an initial potential difference of
6564 V applied across the column. In this separation
process, the analytes are only an order of magnitude
lower in concentration than the background buffer.
As a result, the transport of the analytes is fully
coupled with the transport of the buffer, and an
electric field that is ultimately higher in the analyte
zones than in the surrounding buffer generates
selfsharpening leading edges of these zones. The
sharp transitions advected at high Peclet numbers
typically present problems for standard numerical
techniques used for parabolic equations.

Computed electropherograms for this ZE sepa-
ration are presented in Fig. 1. Panel (a) shows the
electropherograms calculated using a relatively
coarse grid spacing of Dx50.05 cm. The CSD
solution is completely distorted by oscillations and
the UPWIND solution produces peaks that are
excessively eroded by numerical diffusion. This
demonstrates the well known result that upwinding
ensures monotonicity at the expense of significant
numerical diffusion. The PLPE1 solution, however,
produces peaks with no oscillations and much less
numerical diffusion than the UPWIND scheme. The
self-sharpening leading edges of the peaks remain
remarkably vertical for such a coarse discretization;
the boundary is spread over 2.4 s using the PLPE1
method, compared to 14 s with the UPWIND
method. Also, the PLPE1 method resolves the peak
heights to within 7% of the converged values (Fig.
1(b)), but the numerical spreading inherent in the
UPWIND scheme has eroded the peaks by half.
Numerical results of this separation on the same grid
have previously been reported by Ermakov et al.
[10], who found minor numerical oscillations at a

2current density of 509 A/m ; at the current density
simulated here, the Ermakov et al. solution was

Fig. 1. ZE benchmark electropherograms. Pyridine is eluted first
significantly distorted by numerical oscillations. 2followed by aniline. Constant current, 2547 A/m ; initial voltage,

Additional electropherograms, calculated on a 6564 V across a 20 cm column. The detector is positioned at the
finer grid (Dx50.01 cm), for which the PLPE1 center of the column. Initial buffer concentrations, 12 mM tris

base /20 mM acetic acid; initial sample concentrations, 1 mMmethod has converged, are presented in Fig. 1(b).
each. The grid spacing is (a) 0.05 cm and (b) 0.01 cm.Again the CSD solution is marred by oscillations.

The converged PLPE1 solution reveals that the
shoulders on the peaks of the course grid are sion has still eroded the peaks to the extent (14%
artifacts, probably resulting from the nonlinear be- error in peak heights) that the PLPE1 solution on the
havior of the flux limiter [21]. The peaks generated coarse grid (Fig. 1(a)) is closer to the converged
by the UPWIND scheme are much closer to the solution (Fig. 1(b)). Table 1 lists the peak variances
converged PLPE1 solution, but the numerical diffu- and relative errors in peak variance for PLPE1 and
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Table 1 and thus lowers the electric field in the initial sample
2 aZE peak variances (s ) and relative errors in peak variance (e) zone. This causes the basic buffer component to
2 2 bNo. of segments s (s ) %e deplete, and the acidic component to accumulate on

the leading edge of the sample zone. Because the pHPLPE1 UPWIND PLPE1 UPWIND
is much closer to the pK of the acid than the pK of

Aniline
the base, the base has a much higher percent400 55.8 154.8 12.3 210.0
dissociation and thus a much higher effective mobili-2000 49.7 70.9 0.0 42.7

Pyridine ty. As a result, the base depletes much faster than the
400 11.9 43.9 15.5 326.0 acid accumulates in this region, causing an increase

2000 10.3 16.8 0.0 63.1 in the electric field. As the analytes migrate from the
a Italicized numbers indicate converged values. initial sample zone, they pass from a low-field region
b 2 2 2%e 5100 (s 2Converged s ) /(Converged s ). to a higher field region, and are also depleted. A

decrease in analyte concentration reduces the deple-
UPWIND. CSD was not included in the Table tion of the basic buffer on the leading edge of the
because negative concentrations result in meaning- analyte zones, which in turn slows the reduction in
less variances. Note that the relative errors of the analyte concentration. In this way, the con-
UPWIND on the fine grid are approximately five centrations are adjusted until separated analyte
times those of PLPE1 on the coarse grid. Ikuta and zones, lower in concentration than the original zone,
Hirokawa reported simulating this separation on this are formed. These zones are essentially square
grid, using an upwind scheme to obtain numerical because the initial zones are square, but because the
stability [12]. Their upwind scheme suffered similar- basic buffer is depleted, the electric field is now
ly from the deleterious effects of numerical diffu- higher in the analyte zones. This results in a self-
sion. sharpening leading edge and a broadening trailing

A summary of the convergence requirements for edge. Thus a flat top of the analyte zone remains
each scheme is provided in Table 2. Using the until the broadening edge spreads to the leading
PLPE1 method, a converged solution was realized in edge. The aniline zone is approximately at that stage
24 min. The other methods however did not con- as it passes the detector (Fig. 1(b)). The shapes of
verge on a 10 000 segment grid that required almost these peaks are not captured by the the UPWIND or
5 h of computation time. All simulation grids were CSD schemes, nor by any of the previously-pub-
limited to 10 000 segments, so the simulation time lished simulations of this ZE separation, because
required for these 2 methods to converge was not either numerical diffusion erodes or oscillations
determined. distort the profiles.

The converged solution produced by the PLPE1
scheme shows the loss of peak resolution that can 4.2. ITP benchmark
result from the coupling between the ion transport
and the electric field. The flat tops of the converged In an ITP separation, leading and terminating
peaks, particularly the pyridine peak, result from the buffers are selected to establish an electric field that
complicated electric field that develops as the ana- ultimately drives a train of sample and buffer zones
lytes separate in the first minute of separation. The to move isotachophoretically down the separation
presence of the analytes increases the conductivity, column. In accordance with the Kohlrausch con-

dition [29], there are stepwise variations of the
Table 2 electric field in the direction of electrophoretic
Convergence requirements for ZE simulation motion, and self-sharpening boundaries form be-
Scheme Number of Computation tween the zones where the net diffusive flux of each

segments time (min) component is balanced by the net electromigrational
PLPE1 2000 24 flux (when observed from a frame of reference
UPWIND .10 000 .281 moving at the isotachophoretic velocity). At high
CSD .10 000 .268 electric Peclet numbers, i.e. high electric field
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strengths, the zone boundaries must become ex- magnitude smaller grid spacing just to resolve this
tremely sharp to allow diffusion to balance the high zone boundary as well as the PLPE1 method does on
electromigrational fluxes. This typically presents the coarse grid. Numerical results of this separation
difficulties for numerical solutions. have also been reported by Martens et al. using

To evaluate the performance of the PLPE method various implicit upwinding algorithms [11]; the
on an ITP calculation, an isotachophoretic separation method yielding the best overall simulation results
of the two aforementioned weak base analytes was (called DIME) predicted a zone boundary thickness
simulated. The leading electrolyte consisted of 18 of 120 mm on a mesh finer than that required of the
mM sodium hydroxide and 20 mM acetic acid, and PLPE1 method to convergence on the 40 mm
the terminating electrolyte was composed of 40 mM boundary thickness. Numerical results of this sepa-
b-alanine and 50 mM acetic acid. Ten mM aniline ration on the coarse grid have also been reported by
and pyridine and 20 mM acetic acid were introduced Ermakov et al. [10], who indicated that numerical

2as a 1 mm sample plug, 1 mm from the anodic end oscillations form at a current density of 102 A/m .
of a 40 mm long capillary. Initial zone boundary (Note that their results were obtained using a 1 cm
thicknesses were approximately 4% of the sample sample plug and a grid spacing of 0.5 mm. Using

2zone widths (|2 segments of fine mesh). A sepa- those lengths and a current density of 2260 A/m ,
ration time of 42 s was simulated at a constant the PLPE1 method yielded a non-oscillatory solu-

2current of 2260 A/m , which corresponded to initial tion, which was self-similar to that represented by
and final potential differences of 576 V and 3280 V, the dashed line in Fig. 2(a)).
respectively, applied across the column. The convergence requirements for each method

The ITP simulation results of the 3 different applied to the ITP simulation are summarized in
methods are presented in Fig. 2, with the con- Table 3. Again, both the UPWIND and CSD
centrations of the two sample zones bounded by the schemes did not converge at the limit of 10 000
leading electrolyte on the right and the terminator on segments, and thus would require several days to
the left. Results are provided for the UPWIND and reach convergence. The PLPE1 method, however,
PLPE1 schemes on both coarse (Dx550 mm) and converged in less than 9 h of simulation time.
fine (Dx513.3 mm) grids; results of the CSD scheme
are reported only on the fine grid because a solution 4.3. IEF benchmark
could not be obtained on the coarse grid. Even on the
fine grid, the CSD method computes zones that are IEF separations include some physics not relevant
greatly distorted by spurious oscillations. The PLPE1 in ZE or ITP separations. In an IEF separation,
solution on the fine grid, on the other hand, meets amphoteric compounds migrate electrophoretically
not only the convergence criteria defined in Section toward their isoelectric point (iep). As they approach
3, but is also converged in the zone boundary their iep, their electromigrational velocities diminish,
between the two analytes. The PLPE1 and UPWIND thus increasing the role of diffusion in their transport
schemes produce non-oscillatory solutions on each behavior. An IEF simulation thus provides a chal-
grid, but the zone boundaries calculated using the lenging test of a numerical scheme’s ability to handle
PLPE1 method are clearly sharper than those pro- both diffusion and strong electromigration. This is
duced by the UPWIND scheme. The zone boundary particularly important as regards FCT, since it was
thickness between the two analytes is plotted in Fig. first developed to solve unsteady convection prob-
3 as a function of the grid spacing for the PLPE1 and lems with no physical diffusion. The character of
UPWIND schemes. On the coarse grid, the UP- each component balance (Eqs. (6)) in an IEF simula-
WIND scheme predicts a boundary thickness that is tion is typically, at the outset, hyperbolic over the
more than six times larger than the 145 mm thickness entire domain. With time, the components migrate
predicted by the PLPE1 scheme. On the fine grid, the toward their iep, where the component balance laws
PLPE1 method converges on a thickness of 40 mm, become locally parabolic. Most components ap-
as compared to 320 mm with the UPWIND method. proach their iep from either end of the separation
In fact, the UPWIND method requires an order of domain, so the iep is a turning point in the com-
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Fig. 2. ITP benchmark sample zone concentration profiles calculated by (a) PLPE1, (b) UPWIND, and (c) CSD. Constant current, 2260
2A/m ; initial voltage, 576 V across a 40 mm column. Initial concentrations: leader, 18 mM NaOH/20 mM HAc; terminator, 40 mM

b-alanine /50 mM HAc; sample zone, 10 mM aniline and pyridine in 20 mM HAc. The terminating electrolyte zone is to the left, followed
by aniline, pyridine, and the leading electrolyte zone to the right. Anode to the left.

ponent balance law. A numerical scheme applied to generated by 3 amino acids was simulated. A
2an IEF separation must therefore handle the dual constant 96.2 V (initial current density 500 A/m )

hyperbolic /parabolic character of the balance laws, potential difference was applied across a 1 cm
as well as the turning point at the iep. separation domain with no-flux boundary conditions

To evaluate the PLPE1 method for IEF, the at the ends. The initial uniform concentrations of
focusing of a protein in a natural pH gradient components were 10 mM each of glutamic acid,
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Fig. 3. Predicted ITP steady state boundary thickness between the
aniline and pyridine zones as a function of the spatial grid size.
The boundary thickness quoted is defined as the distance over
which the zone concentrations change from 1% to 99% of their
plateau values. Simulation conditions are as for Fig. 2. The DIME
data point is from page 56 of Martens et al. [11].

cycloserine, and arginine, and 7.5 mM of bovine
serum albumin (BSA). The protein was focused for
one min. Results of this simulation conducted at
constant current were presented by Mosher et al. for
current densities two orders of magnitude lower (for
longer times) [5]. Their results show a relatively
broad BSA peak occupying approximately 5% to
10% of the simulation domain and similarly broad
boundaries between the carrier ampholyte zones. As
shown in Figs. 4 and 5, the ampholyte boundaries
and the BSA peak are much sharper at the higher
field strength.

Fig. 4 shows the carrier ampholyte concentrations
Fig. 4. IEF benchmark carrier ampholyte concentration profiles.computed on coarse (Dx520 mm) and fine (Dx5
The zone on the left boundary is glutamic acid, followed by

3.33 mm) grids with each numerical technique. As in cycloserine in the center, and the arginine zone on the right
boundary. Constant voltage, 96.2 V across a 1 cm column; initial

2current density, 500 A/m . Initial carrier ampholyte concen-
Table 3 trations, 10 mM each; initial BSA concentration 7.5 mM. The grid
Convergence requirements for ITP simulation spacing is (a) 20 mm and (b) 3.33 mm. Anode to the left.

Number of Computation
segments time (h) the ITP simulation, the CSD method would not

PLPE1 3000 8.6 generate a solution on the coarse grid. The differ-
UPWIND .10 000 .47.5 ences between the PLPE1 solutions for the carrier
CSD .10 000 .33.5 ampholyte concentrations on the coarse and fine
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results from a mass balance error that occurs where
the electrophoretic velocity changes sign (the turning
point). The UPWIND scheme approximates the
electromigrational derivative at such a point by a
forward difference at a node where the velocity is
negative and by a backward difference at an adjacent
node where the velocity is positive. This results in an
inconsistency in the representation of the mass flux
for the segments adjacent to the iep. With a suffi-
ciently fine grid, the velocity at these neighboring
nodes will approach zero, making the finite differ-
ence representation at the turning point irrelevant,
and the mass balance error will vanish. On the grids
used here, the mass balance error is sufficient to
affect the computed concentration field. No such
errors occur in the arginine and glutamic acid zones
because they accumulate on the ends of the column
in approach to their iep, and thus are either positive
or negative over the entire simulation domain. On
the fine grid, the cycloserine mass balance error is
reduced from 4.8% to 1.5%, and a reduction in the
zone concentration error is observed. Except for the
UPWIND results in the cylcoserine zone, the carrier
ampholyte concentrations of all three schemes are
indistinguishable for the fine grid on the column
length scale (Fig. 4(b)).

The protein concentration field is shown in Fig. 5.
The separation has not quite reached steady state, as
a smaller cathodic peak is migrating toward the
anodic peak at the BSA iep. The effect of numerical
diffusion on the UPWIND solution on the coarse
grid (Fig. 5(a)) can be observed in the small cathodic
peak, and mass balance errors by the UPWIND
method have completely eliminated the focused
protein peak. The BSA mass balance error is far
worse than that for cycloserine because the BSA
zone is narrow, and thus the BSA electromigrational
velocity changes from a significant positive velocityFig. 5. IEF benchmark BSA concentration profiles. Simulation
to a significant negative velocity over a short inter-conditions are as for Fig. 4. The grid spacing is (a) 20 mm and (b)

3.33 mm. Note: results are interpolated linearly between grid val. On the fine grid (Fig. 5(b)), the BSA mass
points. balance error is reduced from 74% to 48%, and the

focused peak is partially recovered. The PLPE1
grids are barely perceptible on the column length solution on the coarse grid accurately predicts the
scale, indicating that these components are nearly position of the focused protein peak, but the peak
converged on the coarse grid. The UPWIND solution height and width change dramatically when calcu-
on the coarse grid exhibits a bit more numerical lated on the fine grid. This is not so much a result of
diffusion, and, more importantly, is flawed with numerical diffusion as it is a simple matter of
respect to the cycloserine zone concentration. This resolution. The BSA zone width predicted on the fine
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grid was 30 mm, which is just slightly wider than the
20 mm segment width of the coarse grid. Therefore,
even an ideal numerical scheme, which would re-
quire 2 segments to resolve a peak positioned with
its apex at a node, could not properly resolve the
BSA peak on the coarse grid. The PLPE1 solution on
the fine grid (Fig. 5(b)) meets all the convergence
criteria defined in Section 3 except that the BSA
peak concentration changed by more than 1% upon
doubling the number of segments. It was estimated
that at least a week of simulation time would be
required to establish the convergence grid. To con-
verge on the narrow BSA zone with a uniform grid
would be inefficient, since computation time would
be wasted on thousands of nodes where the con-
centration would be virtually constant on the seg-
ment length scale.

Fig. 5(b) also reveals that the CSD solution for the
Fig. 6. Improved resolution of the focused BSA peak by the

protein concentration field includes a few small PLPE2 method. Simulation conditions are as for Fig. 4(b). Note:
oscillations on the left edge of the focused peak, but results are interpolated linearly between grid points.
this method resolves the peak slightly better than the
PLPE1 method. The characteristic 3-node flat top of
the PLPE1-generated peak indicates that this results unit, barely visible on this scale, are produced by the
from the ‘clipping’ phenomenon [20,21], common to CSD method. The CSD method generates substantial
flux limiter techniques. The clipping in this case is oscillations in the electric field (20–30 V/cm am-
caused by the strong antidiffusion flux limiter, which plitude) near the carrier ampholyte zone boundaries.
does not allow numerical antidiffusion to push the The UPWIND-generated electric field also deviates
concentration of the peak node above that of neigh- in the cycloserine zone as a result of the mass
boring nodes. Fig. 6 shows the BSA peak calculated balance error.
using the more relaxed flux limiter in the PLPE2
method. With this method, the peak is resolved as
well as with CSD method, and no oscillations are 5. Conclusions
formed. Furthermore, this improvement is realized at
an insignificant computational cost (4% increase in The FCT finite difference scheme is an effective
simulation time), because approximately 80% of the method for solving the coupled set of unsteady
total simulation time is devoted to solving the electromigration–diffusion equations in the electro-
nonlinear algebraic system of equations governing phoretic separations model. The FCT method yields
the pH and component species concentrations. Ap- second-order solutions to these equations, and pre-
plying the PLPE2 method, the BSA peak concen- vents the formation of numerical oscillations. In
tration predicted on the fine grid changes by less than contrast to uncorrected higher-order difference
5% upon doubling the number of nodes on this grid. schemes, and the artificial dispersion scheme pre-

Fig. 7 shows the pH, conductivity, and electric sented by Ermakov et al. [10], there is essentially no
field computed for this IEF separation on the fine Peclet number limit on the stability nor the mono-

3grid using the PLPE2, CSD, and UPWIND schemes. tonicity of FCT [15–21]. At Pe .O(10 ), con-L

The three methods yield essentially indistinguishable verged solutions using FCT can typically be realized
conductivity and pH profiles on the column length on coarser grids and in significantly less simulation
scale, as they did for the concentration of the carrier time than the UPWIND or CSD methods. Also, for
ampholytes. Small pH oscillations on the order of 0.1 the benchmark separations simulated here, the PLPE
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Fig. 7. IEF benchmark pH, conductivity, and electric field profiles. Simulation conditions are as for Fig. 4(b).
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